非接触供电设备以及非接触供电系统
2020-01-15

非接触供电设备以及非接触供电系统

通过使供电设备(1)的一次自谐振线圈(30)与受电装置(2)的二次自谐振线圈(60)经由电磁场进行共振,以非接触方式从供电设备(1)向受电装置(2)进行供电。控制装置(40)基于包括供电设备(1)的一次线圈(20)和一次自谐振线圈(30)以及受电装置(2)的二次自谐振线圈(60)和二次线圈(70)的电路的S21参数,设定频率扩展的频率范围,控制高频电源装置(10)以使其向受电装置(2)供给具有该设定的频率范围的高频电力。

在此,为了不使供电电力大幅降低地抑制电磁场强度的峰值,在本实施方式中,基于实现以共振法进行的送电的电路的S21参数的振幅特性相对增大的频带,设定频率扩展的频率范围。即,S21参数表示包括一次线圈20、一次自谐振线圈30、以及受电装置2的二次自谐振线圈60和二次线圈70(后述)的电路的从输入端口(一次线圈20的输入)向输出端口(二次线圈70的输出)的传输系数。因此,通过基于S21参数的振幅特性相对增大的频带来设定频率扩展的频率范围,能够不使供电电力大幅减低地抑制电磁场强度的峰

Δf2=β(f2/Q2)...(3)

图2是与以共振法进行的送电相关的部分的等效电路图。 图3是表示了从供电设备向受电装置供电时的电磁场强度的图。

另外,在上述的实施方式中,设为了使用一次线圈20通过电磁感应向一次自谐振线圈30进行供电,并使用二次线圈70通过电磁感应从二次自谐振线圈60取出电力,但也可以不设置一次线圈20而从高频电源装置10直接向一次自谐振线圈30供电、不设置二次线圈70而直接从二次自谐振线圈60取出电力。

另外,频率扩展的调制方式可以是直接扩展方式,也可以是跳频方式。在本实施方式中,采用了使用S21参数的振幅特性中的共振频率fl、f2的跳频方式。

发明要解决的课题

另外,在从供电设备1(图1)向混合动力汽车200进行供电时,车辆ECU290使系统主继电器SMR2导通。由此,将由二次自谐振线圈60接受来的电力向蓄电装置210供给。另外,在整流器280与蓄电装置210之间可以设置DC/DC转换器,该DC/DC转换器对由整流器280整流后的直流电力进行电压变换而将其变换为蓄电装置210的电压电平。

在本发明中,基于由送电用共振器和受电用共振器形成的电路的S21参数来设定频率扩展的频率范围,在该频率范围进行频率扩展来进行送电,因此能够使用传输效率(送电效率)高的频带,同时能够降低特定频率中电磁场频谱的峰值。因此,根据本发明,能够不使供电电力降低地抑制电磁场强度的峰值。

电动发电机240为交流旋转电机,例如包括在转子中埋设有永磁体的三相交流同步电动机。电动发电机240使用经由动力分配装置260传递来的发动机250的动能进行发电。例如,若蓄电装置210的充电状态(也称为“SOCGtateOfCharge)”)低于预先确定的值,则发动机250启动并通过电动发电机240进行发电,对蓄电装置210充电。

混合动力汽车200搭载发动机250和电动发电机242作为动力源。发动机250和电动发电机240、242与动力分配装置260连接。并且,混合动力汽车200通过发动机250和电动发电机242的至少一方产生的驱动力进行行驶。发动机250产生的动力由动力分配装置260分配到两条路径。即,一方为向驱动轮270传递的路径,另一方为向电动发电机240传递的路径。

在此,Af在将施加于负载3(图1)的电压设为Vm时,电压变为_的频带的宽度。于是,例如在施加于负载的电压的频率特性中,将根据图4所示的共振频率fl的峰值求出的Q值设为Q1,如下式这样设定频率扩展的频率范围。

图2是与以共振法进行的送电相关的部分的等效电路图。 图3是表示了从供电设备向受电装置供电时的电磁场强度的图。

在此,α为调整系数。